MEASUREMENT PRINCIPLE AND BASIC CRITERIA TO ASSESS THE SPACE CHARGE DISTRIBUTION IN SILICONE ELASTOMERS

Julian Moxter, M.Sc. und Tobias Müller, M.Sc. Prof. Dr.sc. Myriam Koch

TECHNISCHE UNIVERSITÄT DARMSTADT

OUTLINE

1 motivation

- **2** functionality of the PEA
- **3** experimental Setup of PEA system

- 4 overview of the assessment concept
- 5 assessment concept of four samples
- 6 summary/outlook

MOTIVATION

- energy transition:
 - electricity generation increasingly from renewable energies by 2050 (80%)
 - expansion of the HVDC transmission system
 - cable systems for voltages of up to 525 kV
 - space charge inspections have become increasingly important
 - integrated the determination of the space charge distribution into their prequalification (PQ) test procedure

Investigation of the insulations for their space charge behavior

MOTIVATION

- issues with DC load
 - > creation of space charge in the insulating material
 - hetero- or homocharges
- reduction of the electrical strength in the insulation
- possible early damage or breakdown of the insulation material
- > various measuring methods for space charge measurement available:
 - difference between destructive or non-destructive measurement
 - Piezoelectrically Induced Pressure Wave Propagation
 - Lacer Induced Pressure Pulse

Pulsed Electroacoustic Methode (PEA)

- 1) polarization
- 2) generation of acoustic waves
- 3) propagation of acoustic waves
- 4) reflection of acoustic waves
- 5) deconvolution of the signal

- 1) polarization
- 2) generation of acoustic waves
- 3) propagation of acoustic waves
- 4) reflection of acoustic waves
- 5) deconvolution of the signal

- 1) polarization
- 2) generation of acoustic waves
- 3) propagation of acoustic waves 5) deconvolution of the signal
- 4) reflection of acoustic waves

- 1) polarization
- 2) generation of acoustic waves
- 3) propagation of acoustic waves
- 4) reflection of acoustic waves
- 5) deconvolution of the signal

process steps

- 1) polarization
- 2) generation of acoustic waves

- 4) reflection of acoustic waves
- 5) deconvolution of the signal

influence of the system response of the PEA cell frequency-dependent attenuation and dispersion of the material

EXPERIMENTAL SETUP OF PEA SYSTEM

schematic structure of PEA setup & acoustic detection unit

OVERVIEW OF THE BASIC CRITERIA

basic criteria to assess the reduction of space charges

first criteria: average increase of the charge density
 & rise time of the average charge density

$$\rho_{\text{mean}}(t_i) = \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} |\rho(x, t_i)| dx$$

second criteria: Electric field enhancement factor FEF

$$FEF = \left| \frac{E_{\max}(t_i) - E_0}{E_0} \right| \cdot 100\%$$

> Third criteria: reproducibility of the measurements

 $v_{\text{mean}} = \frac{\Delta \rho}{\Delta t} = \frac{\rho_{\text{mean}}(t_{i+1}) - \rho_{\text{mean}}(t_i)}{t_{i+1} - t_i}$

assessment concept of four samples with different filler concentration at E = 10 kV/mm at $T = 60^{\circ}\text{C}$

 \geq

 \geq

in C/m³

mean charge density ho

ASSESSMENT CONCEPT OF FOUR SAMPLES

12

ASSESSMENT CONCEPT OF FOUR SAMPLES

evaluation according to second and third criteria

- > FEF of sample 1 & 2 too high
- > FEF of sample 3& 4 perfect
- two additional batches of sample 4

Material	$ ho_{ m 24h}/ ho_{ m 0h}$	$v_{ m mean}$ in C/m ³ h	FEF in %
Sample1	3.29	Not stable	50
Sample 2	1.82	0.039	47
Sample 3	1.64	0.038	16
Sample 4	2.03	0.035	15
Sample 4b	2.18	0.074	39
Sample 4c	1.82	0.061	45

third basic criterion is not fulfilled for sample 4

SUMMARY/OUTLOOK

- > overview of the different measurement methods and the experimental test setup
- description of the functionality of the PEA method
- presentation of the main criteria of an evaluation concept for assessing the different material compositions of silicones.
 - average increase of the charge density
 - Electric field enhancement factor FEF
 - reproducibility of the measurements
- to explain this evaluation concept, four different carbon black-filled silicone elastomers were measured and evaluated at an electrical field stress of 10 kV/mm at a temperature of 60 C°
- it was possible to show how the spectrum of the different material compositions of the samples could be placed in a suitable research orientation with the help of the three criteria

THANK YOU FOR YOUR ATTENTION!

- [1] <u>https://www.egeplast.de/2020/12/kabelschutzrohre-energiewende/</u>
- [2] R. Hussain, "Electrical Characterization of Liquid Silicone Rubber with Carbon Black Nanofiller for HVDC Cable Accessories". Dissertation, 2021, DOI: 10.26083/tuprints-00018585
- [3] R. Hussain and V. Hinrichsen, "Development and Optimization of a Pulsed Electroacoustic System with Temperature Controlled Electrodes," Nordic Insul. Symp. Mat. Comp. Diagnostics, 2019.